Measure Abbreviation
GLU-05
Data Collection Method

This measure is calculated based on data extracted from the electronic medical record combined with administrative data sources such as professional fee and discharge diagnoses data.  This measure is explicitly not based on provider self-attestation.

Measure Type
Process
Description

 Percentage of cases with a blood glucose >200 mg/dL with documentation of insulin treatment 

 

Measure Time Period

Preop start through PACU end

Inclusions
  • All patients with a documented blood glucose level greater than 200 mg/dL between Preop Start and PACU End
  • Patients with and without diagnosis of diabetes
Exclusions
  • ASA 5 and 6 cases
  • Patients < 12 years of age.
  • Glucose measurements > 200 mg/dL within 90 minutes before measure end
  • Outpatient cases with Anesthesia Start to Anesthesia end time less than 4 hours long
  • Obstetric Non-Operative Procedures- CPT 01958, 01960, 01967
  • Obstetric Non-Operative Procedures with procedure text: “Labor Epidural”
  • Documented blood glucose <200 within 90 minutes of a blood glucose >200 mg/dL excludes the glucose >200mg/dL
Success

Administration of insulin within 90 minutes of blood glucose >200 mg/dL

Other Measure Build Details

Start Time - Preop Start as determined by MPOG Preop Start Time Phenotype

End Time - PACU End as determined by MPOG PACU End Time Phenotype

  • Each blood glucose is evaluated separately. One instance of untreated blood glucose >200mg/dL will flag the case
  • If a blood glucose is >200 mg/dL and any blood glucose within 90 minutes is <200 mg/dL, then the initial blood glucose will be excluded; the case will be excluded if no additional blood glucose values >200mg/dL are documented on the case
  • If a blood glucose is >200 mg/dL and an insulin administration occurs within 90 minutes and there are no additional blood glucose values >200 mg/dL through PACU end, the case will pass.
  • If  blood glucose is >200 mg/dL and there is no insulin treatment within 90 minutes or documentation of a blood glucose <200mg/dL, the case will be flagged.
  • Active infusion of an insulin drip at the time of high glucose will count as treatment for this measure. If no end time is available for an insulin infusion, the ‘measure end time’ will be considered the insulin infusion end time
  • Sites not contributing preop and PACU data are not eligible to participate in this measure
Responsible Provider

Not applicable

Threshold
90%
MPOG Concept IDs Required

 

Insulin MPOG Concept IDs

Glucose MPOG Concept IDs

10229

Insulin Aspart

3361

POC- Glucose (Fingerstick)

10230

Insulin Glargine

3362

POC- Glucose

(Unspecified Source)

10231

Insulin Novolin

3405

POC- Blood Gas- Glucose

10232

Insulin NPH

5003

Formal Lab-Glucose,

Serum/Plasma

10233

Insulin Regular

5036

Formal Lab-Blood Gas,

Glucose

10659

Insulin- Unspecified

10752

Insulin- Lispro?

Data Diagnostics Affected
  • Percentage of Cases with Insulin Administration Mapped Correctly
  • Percentage of Cases with POC Glucose Labs
  • Percentage of Cases with a Lab Drawn during Anesthesia
  • Percentage of Labs Mapped to a Meaningful Lab Mapping
  • Percentage of Medications with a Meaningful Medication Mapping
  • Percentage of Fluids with a Meaningful Fluid Mapping
Rationale

Surgical and anesthetic stress increases hyperglycemia incidence in both diabetics and non-diabetics.3,22 Perioperative hyperglycemia is mediated by the release of proinflammatory cytokines (e.g., TNF-alpha and IL-6) and elevated concentrations of catecholamines, growth hormone, glucagon, and glucocorticoids.4 These mediators induce metabolic alterations in carbohydrate balance that alter peripheral glucose uptake and utilization, increase gluconeogenesis, depress glycogenesis, and induce glucose intolerance and insulin resistance.  Hyperglycemia can also be drug induced (administration of steroids).

Acute hyperglycemia in the perioperative period is known to increase the incidence of wound infections, overall mortality, length of stay, acute kidney injury, and delayed wound healing. 2,5,7, 8-12 Use of insulin to correct perioperative hyperglycemia decreases the risk of hospital complications and mortality in cardiac and general surgery patients.6, 12 The American Association of Clinical Endocrinologists and American Diabetes Association recommend a treatment threshold of 180 mg/dL in critically ill hospitalized patients and a preprandial blood glucose goal of 140 mg/dL in non-critically hospitalized ill patients.13 The Society for Ambulatory Anesthesia, American Association of Clinical Endocrinologists, The Society for Thoracic Surgery, and the Joint British Diabetes Society also recommend blood glucose management <180 mg/dL.14, 15,16, 17, 18 The ADA 2019 guidelines call for perioperative blood glucose ranges from 80-180mg/dL..19 Patients undergoing anesthesia are at risk of hypoglycemia as the effects of anesthesia can mask the symptoms of hypoglycemia; however, conventional glucose targets of <180 mg/dL have not been associated with significant risk of hypoglycemia.1,20,21 Frequent blood glucose monitoring after insulin administration is recommended. Intraoperative glucose levels should be checked every 2 hours or more frequent and insulin infusions should be monitored at least hourly.3 A relatively high threshold glucose level (greater than 200 mg/dL) is used for this measure to alleviate concerns that patients undergoing general anesthetics are at risk of overtreatment and hypoglycemia.1

References
  1. Akhtar, Shamsuddin, Paul G. Barash, and Silvio E. Inzucchi. 2010. “Scientific Principles and Clinical Implications of Perioperative Glucose Regulation and Control.” Anesthesia and Analgesia 110 (2): 478–97.
  2. Bellusse, Gislaine Cristhina, Julio Cesar Ribeiro, Isabel Cristina Martins de Freitas, and Cristina Maria Galvão. 2019. “Effect of Perioperative Hyperglycemia on Surgical Site Infection in Abdominal Surgery: A Prospective Cohort Study.” American Journal of Infection Control, December. https://doi.org/10.1016/j.ajic.2019.11.009.
  3. Duggan, Elizabeth W., Karen Carlson, and Guillermo E. Umpierrez. 2017. “Perioperative Hyperglycemia Management: An Update.” Anesthesiology 126 (3): 547–60.
  4. Esposito, Katherine, Francesco Nappo, Raffaele Marfella, Giovanni Giugliano, Francesco Giugliano, Myriam Ciotola, Lisa Quagliaro, Antonio Ceriello, and Dario Giugliano. 2002. “Inflammatory Cytokine Concentrations Are Acutely Increased by Hyperglycemia in Humans: Role of Oxidative Stress.” Circulation 106 (16): 2067–72.
  5. Frisch, Anna, Prakash Chandra, Dawn Smiley, Limin Peng, Monica Rizzo, Chelsea Gatcliffe, Megan Hudson, et al. 2010. “Prevalence and Clinical Outcome of Hyperglycemia in the Perioperative Period in Noncardiac Surgery.” Diabetes Care 33 (8): 1783–88.
  6. Furnary, Anthony P., Guangqiang Gao, Gary L. Grunkemeier, Yingxing Wu, Kathryn J. Zerr, Stephen O. Bookin, H. Storm Floten, and Albert Starr. 2003. “Continuous Insulin Infusion Reduces Mortality in Patients with Diabetes Undergoing Coronary Artery Bypass Grafting.” The Journal of Thoracic and Cardiovascular Surgery 125 (5): 1007–21.
  7. Gandhi, Gunjan Y., Gregory A. Nuttall, Martin D. Abel, Charles J. Mullany, Hartzell V. Schaff, Brent A. Williams, Lisa M. Schrader, Robert A. Rizza, and M. Molly McMahon. 2005. “Intraoperative Hyperglycemia and Perioperative Outcomes in Cardiac Surgery Patients.” Mayo Clinic Proceedings. Mayo Clinic 80 (7): 862–66.
  8. Kotagal, Meera, Rebecca G. Symons, Irl B. Hirsch, Guillermo E. Umpierrez, E. Patchen Dellinger, Ellen T. Farrokhi, David R. Flum, and SCOAP-CERTAIN Collaborative. 2015. “Perioperative Hyperglycemia and Risk of Adverse Events among Patients with and without Diabetes.” Annals of Surgery 261 (1): 97–103.
  9. Kwon, Steve, Rachel Thompson, Patchen Dellinger, David Yanez, Ellen Farrohki, and David Flum. 2013. “Importance of Perioperative Glycemic Control in General Surgery: A Report from the Surgical Care and Outcomes Assessment Program.” Annals of Surgery 257 (1): 8–14.
  10. Mendez, Carlos E., Paul J. Der Mesropian, Roy O. Mathew, and Barbara Slawski. 2016. “Hyperglycemia and Acute Kidney Injury During the Perioperative Period.” Current Diabetes Reports 16 (1): 10.
  11. Ramos, Margarita, Zain Khalpey, Stuart Lipsitz, Jill Steinberg, Maria Theresa Panizales, Michael Zinner, and Selwyn O. Rogers. 2008. “Relationship of Perioperative Hyperglycemia and Postoperative Infections in Patients Who Undergo General and Vascular Surgery.” Annals of Surgery 248 (4): 585–91.
  12. Umpierrez, Guillermo E., Scott D. Isaacs, Niloofar Bazargan, Xiangdong You, Leonard M. Thaler, and Abbas E. Kitabchi. 2002. “Hyperglycemia: An Independent Marker of in-Hospital Mortality in Patients with Undiagnosed Diabetes.” The Journal of Clinical Endocrinology and Metabolism 87 (3): 978–82.
  13. Moghissi, Etie S., Mary T. Korytkowski, Monica DiNardo, Daniel Einhorn, Richard Hellman, Irl B. Hirsch, Silvio E. Inzucchi, et al. 2009. “American Association of Clinical Endocrinologists and American Diabetes Association Consensus Statement on Inpatient Glycemic Control.” Diabetes Care 32 (6): 1119–31.
  14. Joshi, Girish P., Frances Chung, Mary Ann Vann, Shireen Ahmad, Tong J. Gan, Daniel T. Goulson, Douglas G. Merrill, Rebecca Twersky, and Society for Ambulatory Anesthesia. 2010. “Society for Ambulatory Anesthesia Consensus Statement on Perioperative Blood Glucose Management in Diabetic Patients Undergoing Ambulatory Surgery.” Anesthesia and Analgesia 111 (6): 1378–87.
  15. Moghissi, Etie S., Mary T. Korytkowski, Monica DiNardo, Daniel Einhorn, Richard Hellman, Irl B. Hirsch, Silvio E. Inzucchi, et al. 2009. “American Association of Clinical Endocrinologists and American Diabetes Association Consensus Statement on Inpatient Glycemic Control.” Diabetes Care 32 (6): 1119–31.
  16. Lazar, Harold L., Marie McDonnell, Stuart R. Chipkin, Anthony P. Furnary, Richard M. Engelman, Archana R. Sadhu, Charles R. Bridges, et al. 2009. “The Society of Thoracic Surgeons Practice Guideline Series: Blood Glucose Management during Adult Cardiac Surgery.” The Annals of Thoracic Surgery 87 (2): 663–69.
  17. Dhatariya, K., N. Levy, A. Kilvert, B. Watson, D. Cousins, D. Flanagan, L. Hilton, et al. 2012. “NHS Diabetes Guideline for the Perioperative Management of the Adult Patient with Diabetes.” Diabetic Medicine: A Journal of the British Diabetic Association 29 (4): 420–33.
  18. Duggan, Elizabeth, and York Chen. 2019. “Glycemic Management in the Operating Room: Screening, Monitoring, Oral Hypoglycemics, and Insulin Therapy.” Current Diabetes Reports 19 (11): 134.
  19. American Diabetes Association. 2019. “15. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2019.” Diabetes Care 42 (Suppl 1): S173–81.
  20. NICE-SUGAR Study Investigators, Simon Finfer, Dean R. Chittock, Steve Yu-Shuo Su, Deborah Blair, Denise Foster, Vinay Dhingra, et al. 2009. “Intensive versus Conventional Glucose Control in Critically Ill Patients.” The New England Journal of Medicine 360 (13): 1283–97.
  21. NICE-SUGAR Study Investigators, Simon Finfer, Bette Liu, Dean R. Chittock, Robyn Norton, John A. Myburgh, Colin McArthur, et al. 2012. “Hypoglycemia and Risk of Death in Critically Ill Patients.” The New England Journal of Medicine 367 (12): 1108–18.
  22. Dungan, Kathleen M., Susan S. Braithwaite, and Jean-Charles Preiser. 2009. “Stress Hyperglycaemia.” The Lancet 373 (9677): 1798–1807.